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Abstract

In this paper we present a simple closed form stock price formula, which captures empirical reg-
ularities of high frequency trading (HFT), based on two factors: (1) exposure to hedge factor; and
(2) hedge factor volatility. Thus, the parsimonious formula is not based on fundamental valuation.
For applications, we first show that in tandem with a cost of carry model, it allows us to use ex-
posure to and volatility of E-mini contracts to estimate dynamic hedge ratios, and mark-to-market
capital gains on contracts. Second, we show that for given exposure to hedge factor, and suitable
specification of hedge factor volatility, HFT stock price has a closed form double exponential rep-
resentation. There, in periods of uncertainty, if volatility is above historic average, a relatively
small short selling trade strategy is magnified exponentially, and the stock price plummets when
such strategies are phased locked for a sufficient large number of traders. Third, we demonstrate
how asymmetric response to news is incorporated in the stock price by and through an endogenous
EGARCH type volatility process for past returns; and find that intraday returns have a U-shaped
pattern inherited from HFT strategies. Fourth, we show that for any given sub-period, capital gains
from trading is bounded from below (crash), i.e. flight to quality, but not from above (bubble), i.e.
confidence, when phased locked trade strategies violate prerequisites of van der Corput’s Lemma
for oscillatory integrals. Fifth, we provide a taxonomy of trading strategies which reveal that
high HFT Sharpe ratios, and profitability, rests on exposure to hedge factor, trading costs, volatil-
ity thresholds, and algorithm ability to predict volatility induced by bid-ask bounce or otherwise.
Thus, extant regulatory proposals to control price dynamics of select stocks, i.e., pause rules such
as ”limit up/limit down” bands over 5-minute rolling windows, may mitigate but not stop future
market crashes or price bubbles from manifesting in underlying indexes that exhibit HFT stock
price dynamics.

Keywords: high frequency trading, hedge factor volatility, price reversal, market crash, price bub-
bles, fundamental valuation, van der Corput’s Lemma, Sharpe ratio, cost of carry

JEL Classification Codes: C02, G11, G12, G13
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1 Introduction

”A theory is a good theory if it satisfies two requirements: It must ac-

curately describe a large class of observations on the basis of a model

that contains only a few arbitrary elements, and it must make definite

predictions about the results of future observations”. Stephen Hawkins,

A Brief History of Time.

Recent studies indicate that high frequency trading (HFT) accounts for about 77%

of trade volume in the UK1 and upwards of 70% of trading volume in U.S. eq-

uity markets, and that ”[a]bout 80% of this trading is concentrated in 20% of the

most liquid and popular stocks, commodities and/or currencies”2. Thus, at any

given time an observed stock price in that universe reflects high frequency trading

rules over price fundamentals3. In fact, a recent report by the Joint CFTC-SEC

Advisory Committee summarizes emergent issues involving the impact of HFT

on market microstructure and stock price dynamics4. This suggests the existence

of stock price formulae for HFT, different from the class of Gordon5 dividend

based fundamental valuation6 and present value models popularized in the litera-
1(Sornette and Von der Becke, 2011, pg. 4)
2Whitten (2011). By definition, these statistics do not include dark pools or over the counter trades that are used to

circumvent price impact on ”lit” exchanges dominated by HFT.
3(Zhang, 2010, pg. 5) characterizes algorithmic trading rules thusly: ” HFT is a subset of algorithmic trading, or

the use of computer programs for entering trading orders, with the computer algorithm deciding such aspects of the
order as the timing, price, and order quantity. However, HFT distinguishes itself from general algorithmic trading in
terms of holding periods and trading purposes”.

4See (Joint Advisory Committee on Emerging Regulatory Issues, 2011, pg. 2) (”The Committee believes that the
September 30, 2010 Report of the CFTC and SEC Staffs to our Committee provides an excellent picture into the new
dynamics of the electronic markets that now characterize trading in equity and related exchange traded derivatives”.)
(emphasis added).

5Gordon (1959)
6See e.g., Tobin (1984). Compare (Campbell et al., 1997, Chapter 3.2) (bid-ask spreads due to market microstruc-
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ture7. This paper provides such a formula by establishing stochastic equivalence

between recent continuous time trade strategy and alpha representation theories

introduced in Jarrow and Protter (2010), Jarrow (2010) and Cadogan (2011).

Evidently, high frequency traders quest for alpha, and their concomitant

trade strategies are the driving forces behind short term stock price dynamics. In

fact, a back of the envelope calculation by (Infantino and Itzhaki, 2010, pp. 10-11),

using the Information Ratio (IR) metric popularized by (Grinold and Kahn, 2000,

pg. 28), report that a high frequency trader who trades every 100 seconds can be

13,000 times less accurate than a star portfolio manager who trades about once

per day, and still generate the same alpha. In that case, let (Ω,{F}t≥0,F,P) be a

filtered probability space, S(t,ω) be a realized stock price defined on that space,

X(t,ω) be a realized hedge factor, βX(t,ω) be a trade strategy factor, i.e. exposure

to hedge factor, σX(t,ω) be hedge factor stochastic volatility, Q be a probability

measure absolutely continous with respect to P, and B̃X(u,ω) be a P-Brownian

bridge or Q-Brownian motion that captures background driving stochastic pro-

cess8 for price reversal strategies9. We claim that the stock price representation

ture distorts fundamental price and cause serial correlation in transaction prices).
7See e.g., Shiller (1989), and Shiller and Beltratti (1992) who used annual returns, in a variant of Gordon’s model of

fundamental valuation for stock prices, and reject rational expectations present value models. But compare, (Madha-
van, 2011, pp 4-5) who reports that ”The futures market did not exhibit the extreme price movements seen in equities,
which suggest that the Flash Crash [of May 6, 2010] might be related to the specific nature of the equity market
structure”.

8Christensen et al. (2011) report that granular tick by tick data reveal that jump variation account for at most 1% of
price jumps, and that volatility drives ultra high frequency trading. Thus, Brownian motion without jumps is consistent
with empirical regularities of HFT. We take notice of the importance of volatility for pricing futures contracts in an
econometric specification

rF(t) =−(i−d)+h(t)
(

σ2
F(t)

σS(t)

)
+∆η(t)

for cost of carry, motivated by the formula, in subsection 4.1 on page 19, infra.
9(Kirilenko et al., 2011, pg. 3) (”[N]et holdings of HFT fluctuate around zero”)
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for high frequency trading is given by

S(t,ω) = S(t0)exp
(∫ t

t0
σX(u, ,ω)βX(u,ω)dB̃X(u,ω)

)
(1.1)

For instance, this formula allows us to use exposure (βX) to and volatility (σX) of

E-mini contracts (X) to predict movements in an underlying index (S)10. In fact,

we show that the for a dyadic partition t(n)j , j = 0, · · · ,2n−1, of the interval [t0, t],

for risk free rate r f , the HFT Sharpe ratio is given by

Sratio(t,ω) =

(
βX(t,ω)ε̃X(t,ω)− r f

σX(t,ω)

)

exp

(
2n−1

∑
j=0

past observations︷ ︸︸ ︷
σX(t

(n)
j ,ω)βX(t

(n)
j ,ω)ε̃X(t

(n)
j ,ω)

) (1.2)

where ε̃X corresponds to news11 or market sentiment. For given exposure βX if

traders algorithmic forecasts about the direction of news (or market sentiment), i.e.

sgn(ε̃X(t,ω)) are accurate, then the Sharpe ratio will be high12 when βX ε̃X > r f

and

2n−1

∑
j=0

past observations︷ ︸︸ ︷
σX(t

(n)
j ,ω)βX(t

(n)
j ,ω)ε̃X(t

(n)
j ,ω)> 0

because of the multiplicative exponential term that depends on past observations13.
10This is indeed the case. See e.g. Kaminska (2011)
11See e.g. (Engle and Ng, 1993, pg. 1751) who interpret sgn(ε̃X ) > 0 as good news, i.e., unexpected increase in

price, and sgn(ε̃X )< 0 as bad news, i.e., unexpected decrease in price.
12(Brogaard, 2010, pg. 2) estimated a Sharpe ratio of 4.5 for HFT.
13See (Brogaard, 2010, pg. 2) (”I find past returns are important and so perform a logit regression analysis on

past returns for different HFTs buying/selling and liquidity providing/demanding activities. The results suggest HFTs
engage in a price reversal strategy. In addition, the results are strongest for past returns that are associated with a
buyer-seller order imbalance.”).

5



Suppose that ”X-factor” volatility has a continuous time GARCH(1,1) representa-

tion given by

dσ
2
X(t,ω) = θ(η−σ

2
X(t,ω))dt +ξ σ

2
X(t,ω)dWσX (t,ω) (1.3)

where θ is the rate of reversion to mean volatility η , ξ is a scale parameter, and

WσX is a background driving Brownian motion for stochastic volatility σX . After

applying Girsanov’s Theorem to remove the drift in 1.3, and then substituting

the resultant expression in 1.1, we get the double exponential local martingale

representation of the stock price given by

S(t,ω) =

S(t0)exp(exp(− 1
2 ξW̃σX (t0)))exp

(∫ t

t0
βX(u,ω)exp(1

2 ξW̃σX (u,ω))dB̃X(u,ω)
)

(1.4)

Further details on derivation of the formula, and description of variables are pre-

sented in the sequel.

As indicated above, our parsimonious formula is closed form and it is

based on two factors: (1) exposure to hedge factor, and (2) hedge factor volatility.

The formula plainly shows that for given exposure, βX(u,ω), to the ”X-factor”,

if uncertainty in the market is such that volatility is above historic average, i.e.,

σ2
X(t,ω) > η is relatively high, a portfolio manager might want to reduce expo-

sure in order to stabilize the price of S(t,ω). However, if βX(u,ω) is reduced to
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the point where it is negative, i.e. there is short selling, then the price of S(t,ω)

will be in an exponentially downward spiral if volatility continues to increase14.

Thus, feedback effects15 between S(t,ω), the ”X-factor” and exposure control or

trade strategy βX(u,ω) determines the price of S16. In this setup, so called mar-

ket fundamentals do not determine the price. In fact, we show in Proposition 4.7

that HFT profitability rests on trader exposure to hedge factor, and ability to read

market signals that portend accurate volatility forecasts.

One of the key results of our paper is the introduction of an admissible

lower bound of zero (crash), and unbounded upper limit (bubble) for capital gains

in high frequency trading environments. The analytics for that result are based

on violation of van der Corput’s Lemma for oscillatory integrals17, and they pro-

duced a taxonomy of profitable trade strategies in the sequel. Recent proposals by

the Joint Advisory Committee on Emerging Regulatory Issues include so called

”Pause rules” extended to limit up\ limit down bands for the price of select stocks

over rolling 5-minute windows18. Assuming without deciding that such recom-
14This prediction is supported by (Kirilenko et al., 2011, pg. 3) who observed:

During the Flash Crash, High Frequency Traders initially bought contracts from Fundamental Sellers.
After several minutes, HFTs proceeded to sell contracts and compete for liquidity with Fundamental
Sellers. In this sense, the trading of HFTs, appears to have exacerbated the downward move in prices.
In addition, HFTs appeared to rapidly buy and sell contracts from one another many times, generating
a hot potato effect before Fundamental Buyers were attracted by the rapidly falling prices to step in and
take these contracts off the market.

15See (Øksendal, 2003, pg. 237) for taxonomy of admissible [feedback] control functions. See also, de Long et al.
(1990) (positive feedback trading by noise traders increase market volatility).

16For instance, (Madhavan, 2011, pg. 5) distinguishes between rules based algorithmic trading, and comparatively
opaque high frequency trading in which traders play a signal jamming game of quote stuffing. There, large orders
are posted and immediately canceled, i.e. reversed. See McTague (2010). This price reversal strategy is captured by
βX (u,ω) and embedded in our stock price.

17See e.g., (Stein, 1993, pg. 332).
18See e.g. (Joint Advisory Committee on Emerging Regulatory Issues, 2011, Recommendation #3, pg. 5)
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mendations would mitigate order imbalances that may trigger excess volatility, its

unclear how pause rules would affect the behaviour of an underlying basket of

stocks or derivatives that may not be covered by the recommendation. In which

case, an underlying stock index (comprised of stocks not covered by the recom-

mendation) priced by our formula remains vulnerable to crashes and bubbles. The

efficacy of our formula is supported by recent research on HFT which we review

next.

An empirical study by Zhang (2010) found that high frequency trading

(HFT) increases stock price volatility. In particular, ”the positive correlation be-

tween HFT and volatility is stronger when market uncertainty is high, a time when

markets are especially vulnerable to aggressive to HFT”19 A result predicted by

our formula. Further, he used earnings surprise and analysts forecast as proxies

for news and firm fundamentals to examine HFT response to price shocks. He

found that ”the incremental price reaction associated with HFT are almost entirely

reversed in the subsequent period”20. That finding is consistent with the price re-

versal strategy predicted by our theory. And the response to news is captured by

our continuous time GARCH(1,1) specification21 to hedge factor volatility incor-

porated in our closed form formula in an example presented in the sequel.

(Jarrow and Protter, 2011, pg. 2) presented a continuous time signalling

model in which HFT ”trades can create increased volatility and mispricings” when
19(Zhang, 2010, pg. 3).
20Ibid.
21See e.g., (Engle, 2004, pg. 408).
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high frequency traders observe a common signal. This is functionally equivalent

to the trade strategy factor embedded in our closed form formula. However, those

authors suggests that ”predatory aspects of high frequency trading” stem from the

speed advantage of HFT, and that perhaps policy analysts should focus on that

aspect. By contrast, our formula suggests that limit on short sales would mitigate

the problem while still permitting the status quo.

A tangentially related paper22 by Madhavan (2011) used a market segmen-

tation theory, based on application of the Herfindahl Index, of market microstruc-

ture to explain the Flash Crash of May 6, 2010. Of relevance to us is (Madhavan,

2011, pg. 4) observation, that the recent joint SEC and CFTC report on the Flash

Crash identified a trader’s failure to set a price limit on a large E-mini futures con-

tract, used to hedge an equity position, as the catalyst for the crash23. There, stock

price movements were magnified by a feedback loop. An event predicted by, and

embedded in, our stock price formula for high frequency trading as indicated in

subsubsection 4.5.1. (Madhavan, 2011, pg. 6) also provides a taxonomy of high

frequency trading strategies from papers he reviewed.

The rest of the paper proceeds as follows. In section 2 we introduce the

model. In section 3 we derive the HFT stock price formula. The main result

there is Proposition 3.3. In section 4, we briefly discuss the formula’s implica-

tions for econometric estimation of optimal hedge ratio in cost of carry models in
22See also, (Sornette and Von der Becke, 2011, pp. 4-5) who argue that volume is not the same thing as liquidity,

and that HFT reduces welfare of the real economy.
23Some analysts believe that algorithmic trading and or HFT is responsible for as much as a 10-fold decrease in

market depth for S&P 500 E-mini contracts. See Kaminska (2011).
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subsection 4.1. Next we apply the formula in the context of stochastic volatil-

ity in Lemma 4.1; characterize intraday return patterns in in Lemma 4.2; and

the impact of phase locked high frequency trading strategies on capital gains in

Proposition 4.6. Proposition 4.7 characterizes profitable HFT strategies. In sub-

subsection 4.5.1 we apply our theory to some graphics generated by Nanex to see

if it explains observed trade phenomenon in natural gas index futures. In section 5

we conclude with perspectives on the implications of the formula for trade cycles

in the context of quantum cognition.

2 The Model

We begin by stating the alpha representation theorems of Cadogan (2011); Jarrow

and Protter (2010) in seriatim on the basis of the assumptions in Jarrow (2010).

Then we show that the two theorems are stochastically equivalent–at least for a

single factor–and provide some analytics from which the HFT stocp price formula

is derived.

Assumption 2.1. Asset markets are competitive and frictionless with continuous

trading of a finite number of assets.

Assumption 2.2. Asset prices are adapted to a filtration of background driving

Brownian motion.

Assumption 2.3. Prices are ex-dividend.

10



Theorem 2.4 (Trading strategy representation. Cadogan (2011)).

Let (Ω,Ft ,F,P) be a filtered probability space, and Z = {Zs,Fs; 0 ≤ s < ∞} be

a hedge factor matrix process on the augmented filtration F. Furthermore, let

a(i,k)(Zs) be the (i,k)-th element in the expansion of the transformation matrix

(ZT
s Zs)

−1ZT
s , and B = {B(s),Fs; s ≥ 0} be Brownian motion adapted to F such

that B(0) = x. Assuming that B is the background driving Brownian motion for

high frequency trading, the hedge factor sensitivity process, i.e. trading strategy,

γ = {γs,Fs;0≤ s < ∞} generated by portfolio manager market timing for Brow-

nian motion starting at the point x≥ 0 has representation

dγ
(i)(t,ω) =

j

∑
k=1

a(i,k)(Zt)

[
x

1− t

]
dt−

j

∑
k=1

a(i,k)(Zt)dB(t,ω), x≥ 0

for the i-th hedge factor i = 1, . . . , p, and 0≤ t ≤ 1.

�

Proof. See (Cadogan, 2011, Thm. 4.6).

Remark 2.1. (Cadogan, 2011, §2.2) presented a data mining algorithm based on

martingale system equations to identify excess returns and describe high frequency

trade strategy.

�

Cadogan (2011) computes an alpha vector ααα(t,ω) = Zγγγ(t,ω) where Z is a ma-

trix of hedge factors and γγγ(t,ω) is a vector of hedge factor sensitivity that con-
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stitutes the active portfolio manager’s trading strategy. This parametrization is

consistent with hedge factor models24 such as Fama and French (1993).

Theorem 2.5 ((Jarrow and Protter (2010))).

Given no arbitrage, there exist K portfolio price processes {X1(t), . . . ,XK(t)} such

that an arbitrary security’s excess return with respect to the default free spot in-

terest rate, i.e. risk free rate, rt can be written

dSi(t)
Si(t)

− rtdt =
K

∑
k=1

βik(t)
(

dXi(t)
Xi(t)

− rtdt
)
+δi(t)dεi(t) (2.1)

where εi(t) is a Brownian motion under (P,Ft) independent of Xk(t) for k =

1, . . . ,K and δi(t) = ∑
d
k=K+1 σ2

ik(t)

�

Proof. See (Jarrow and Protter, 2010, Thm. 4).

In contrast to Cadogan (2011) endogenous alpha, (Jarrow, 2010, pg. 18) sur-

mised that ”[i]n active portfolio management, an econometrician would add a con-

stant αi(t)dt to [the right hand side of] this model”. So Cadogan (2011) alpha is

adaptive, whereas Jarrow (2010) alpha is exogenous. Without loss of generality

we assume that the filtration in each model is with respect to background driving

Brownian motion.
24See Noehel et al. (2010) for a review.
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2.1 Trade strategy representation of alpha in single factor CAPM

If our trade strategy representation theory is well defined, then it should shed light

on the behavior of alpha in a single factor model like CAPM where there is no

hedge factor. In particular, for cumulative alpha A(t) let25

A(t) = Zγγγ(t) (2.2)

where Z is a hedge factor matrix, and γγγ(t) is a trade strategy vector. Thus, for

some vector ααα(t) we have

d{A(t)|Z}=ααα(t)dt = Zdγγγ(t). Let (2.3)

Z = 1{n} (2.4)

So that

(ZT Z)−1ZT = n−11T
{n} and a(1,k)(Zs) = n−1, k = 1, . . . ,n (2.5)

Substitution of these values in Theorem 2.4 gives us, by abuse of notation, the

scalar equation for trade strategy alpha

−α(t)dt =−dγ
(1)(t) =− x

1− t
dt +dB(t) (2.6)

25See (Christopherson et al., 1998, pp. 121-122) for representation of alpha conditioned on a Z-matrix of economic
information.
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That is the equation of a Brownian bridge starting at B(0) = x on the interval [0,1].

See (Karlin and Taylor, 1981, pg. 268). So that trade strategy alpha is given by

dγ
(1)(t) =−dBbr(t) (2.7)

γ
(1)(t) = Bbr(0)−Bbr(t) (2.8)

However, there is more. According to Girsanov’s formula in (Øksendal, 2003,

pg. 162), we have an equivalent probability measure Q based on the martingale

transform

M(t,ω) = exp
(∫ t

0

x
1− s

dB(s,ω)−
∫ t

0

(
x

1− s

)2

ds
)

(2.9)

dQ(ω) = M(T,ω)dP(ω), 0≤ t ≤ T ≤ 1 (2.10)

Furthermore, we have the Q-Brownian motion

B̂(t) =−
∫ t

0

x
1− s

ds+B(t), and (2.11)

dγ
(1)(t) =−dB̂(t) =−dBbr(t) (2.12)

In other words, γ(1) is a Q-Brownian motion–in this case a Brownian bridge–that

reverts to the origin starting at x. We note that

dγ(1)(t)
dt

=−dBbr(t)
dt

= ε̃t (2.13)

14



Hence the ”residual(s)” ε̃t , associated with rate of change of Jensen’s alpha, have

an approximately skewed U-shape pattern on [0,1]. Additionallly, (Karlin and

Taylor, 1981, pg. 270) show that the Brownian bridge can be represented by the

Gaussian process

G(t) = (1− t)B
(

t
1− t

)
(2.14)

EQ[G(s1)G(s2)] =


s1(1− s2) s1 < s2

s2(1− s1) s2 < s1

(2.15)

This is the so called Doob transformation, see (Doob, 1949, pp. 394-395), and

B(t) = (1+ t)B
(

t
1+ t

)
(2.16)

(Karatzas and Shreve, 1991, pg. 359) also provide further analytics which show

that we can write the trade strategy alpha as

dγ
(1)(t) =

1− γ(1)

1− t
dt +dB(t); 0≤ t ≤ 1, γ

(1) = 0 (2.17)

M(t) =
∫ t

0

dB(s)
1− s

(2.18)

T (s) = inf{t|< M >t> s} (2.19)

G(t) = B<M>T (t) (2.20)

where < M >t is the quadratic variation26 of the local martingale M.
26See (Karatzas and Shreve, 1991, pg. 31).
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3 High Frequency Trading Stock Price Formula

We use a single factor representation of Theorem 2.4 and Theorem 2.5 with K = 1

to derive the stock price formula as follows27. Using (Jarrow, 2010, eq(5), pg. 18)

formulation, let

α(t)dt =
dS(t)
S(t)

− rtdt−β1(t)
(

dX1(t)
X1(t)

− rtdt
)
−σdB(t) (3.1)

=
dS(t)
S(t)

−β1(t)
dX1(t)
X1(t)

− rt(1−β1(t))dt−σdB(t) (3.2)

Comparison with 2.6 suggests that the two alphas are equivalent if the following

identifying restrictions are imposed

dγ
(1)(t)≡ α(t)dt (3.3)

⇒ dS(t)
S(t)

−β1(t)
dX1(t)
X1(t)

= 0 (3.4)

σ = 1 (3.5)

x
1− t

= (β1(t)−1)rt (3.6)

So that

−dγ
(1) =−(β1(t)−1)rtdt +dB(t) (3.7)

27(Jarrow and Protter, 2010, pg. 12, eq. (12)) refer to the ensuing as a ’regression equation” for which an econo-
metrican tests the null hypothesis H0 : α(t)dt = 0. However, (Cadogan, 2011, eq. 2.1) applied asymptotic theory
to econometric specification of a canonical multifactor linear asset pricing model augmented with portfolio manager
trading strategy to identify portfolio alpha.
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In fact, if for some constant drift µX , volatility σX , and P-Brownian motion BX we

specify the ”hedge factor” dynamics

dX1(t)
X1(t)

= µXdt +σXdBX(t) (3.8)

then after applying Girsanov’s change of measure to 3.8, and by abuse of notation

[and without loss of generality] setting βX(t,ω) = β1(t), we can rewrite 3.4 as

dS(t)
S(t)

= βX(t,ω)σXdB̃X(t) (3.9)

for some Q-Brownian motion B̃X . These restrictions, required for functional equiv-

alence between the two models, are admissible and fairly mild. We summarize the

forgoing in the following

Proposition 3.1 (Stochastic equivalence of alpha in single factor models.). As-

sume that asset prices are determined by a single factor linear asst pricing model.

Then the Jarrow and Protter (2010) return model is stochastically equivalent to

Cadogan (2011) trading strategy representation model.

�

Corollary 3.2 (Jarrow (2010) trade strategy drift factor).

{β1(t)}t∈[0,T ] in Jarrow (2010) is a trade strategy [drift] factor.

�

Equation 3.9 plainly shows that the closed form expression for the stock
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price over some interval [t0, t] is now:

d{ln(S(t,ω))}= βX(t,ω)σXdB̃X(t,ω) (3.10)

⇒
∫ t

t0
d{ln(S(t,ω))}= σX

∫ t

t0
βX(u,ω)dB̃X(u,ω) (3.11)

⇒ S(t,ω) = S(t0)exp
(∫ t

t0
σX︸︷︷︸

volatility

βX(u,ω)︸ ︷︷ ︸
exposure

dB̃X(u,ω)︸ ︷︷ ︸
news

)
(3.12)

This formula allows us to use E-mini futures contracts to predict movements in an

underlying index. For constant volatility σX , this gives us the following

Proposition 3.3 (High Frequency Trading Stock Price Formula).

Let (Ω,F ,F,P) be a probability space with augmented filtration with respect to

Brownian motion B = {B(t,ω);0 ≤ t < ∞}. Let S be a stock price, and X be a

hedge factor with volatility σX , adapted to the filtration; and βX be the exposure

of S to X. Then the stock price over the interval [t0, t] is given by

S(t,ω) = S(t0)exp
(∫ t

t0
σXβX(u,ω)dB̃X(u,ω)

)
�

4 Applications

We provide five applications of our stock price representation theory in seriatim

in the sequel. First, we consider the implications of our formula for cost of carry

models, including but not limited to estimation of dynamic hedge ratios. Sec-
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ond, we consider the case of stochastic volatility when σX has continuous time

GARCH(1,1) representation28. We use Girsanov’s Theorem to extend the formula

to the case of double exponential representation of HFT stock price. correlated

background driving processes. Third, we consider the case of intraday return pat-

terns generated by our formula, and show how it has EGARCH features. There,

we show how news is incorporated in the HFT stock price. And we provide a

Sharpe ratio estimator for HFT. Fourth, we present bounds of capital gains arising

from phase locked processes. There, we use van der Corput’s Lemma29 for phase

functions to motivate our result. Fifth, we characterize cost and volatility struc-

tures, and derive profitable trade strategies for HFT. Whereupon we close with

application of the formula to a case study of Nanex graphics for high frequency

trading of natural gas index futures on NYMEX.

4.1 Implications for cost of carry models and optimal hedge ratio

Proposition 3.3 has implications for the cost of carry model popularized in pricing

futures. Specifically, let i and d be short term interest rate and dividend yield for

stocks in an index S(t) over a given horizon [0,T ] for a hedge factor, i.e. futures

price, F(t,T ) at time t. The cost of carry model posits that at time t ∈ [0,T ] the

spot price S(t) of the index is S(t) = F(t,T )exp(−(i− d)(T − t)). By equating
28 In practice we would use the implied volatility of the ”X-factor”. Furthermore, there are several different spec-

ifications for stochastic volatility popularized in the literature. See Shephard (1996) for a review. However, ”[t]he
GARCH(1,1) specification is the workhorse of financial applications,” (Engle, 2004, pg. 408).

29See (Stein, 1993, Prop. 2, pg. 332)
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this to our formula we find

F(t,T )exp(−(i−d)(T − t)) = S(0)exp
(∫ t

0
σF(u,ω)βF(u,ω)dB̃F(u,ω)

)
(4.1)

βF(u,ω) =
h(u,ω)σF(u,ω)

σS(u,ω)
(4.2)

where σS(u,ω) is volatility of spot index and h(u,ω) =
NF(u,ω)
NS(u,ω)

is a hedge ratio,

i.e. Markov control variable, for amount of futures contracts to stock index, as

indicated in (Hull, 2006, pg. 73). After taking logs of both sides of the incip-

ient equation, and discretizing the stochastic integral term we get the following

admissible parametrization

ln(F(t,T )) = ln(S(0))+(i−d)(T − t)+
t

∑
k=1

βF(k)σF(k)+η(t) (4.3)

During a time interval [s+, t], the mark-to-market capital gains of the futures con-

tract is given by

ln(F(t,T ))− ln(F(s+,T )) =−(i−d)(t− s+)+
t

∑
k=s+

βF(k)σF(k)+η(t)−η(s+)

(4.4)

=−(i−d)(t− s+)+
t

∑
k=s+

h(k)
σ2

F(k)
σS(k)

+η(t)−η(s+) (4.5)
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By setting s = t−1, where ”1” is an appropriate time scale in milliseconds, we get

the returns

ln(F(t,T ))− ln(F(t−1,T )) = rF(t) =−(i−d)+βF(t)σF(t)+∆η(t) (4.6)

⇒ rF(t) =−(i−d)+h(t)
(

σ2
F(t)

σS(t)

)
+ ε(t) (4.7)

where rF is log-returns on futures, σF(t) and σS(t) have GARCH type dynamics,

η is assumed stationary so that ε(t) = ∆η(t) is a ”news” term, and h(t) is a rough

estimate of time varying optimal hedge ratio. We use s+ to highlight the fact

that the unit of measurement is in milliseconds. According to results reported in

Christensen et al. (2011) the specification above is consistent with the notion that

ultra-HFT is driven by volatility with negligible price jumps, and that traders get

in and out of positions quite rapidly to capture mark-to-market capital gains in

(4.4). For example, 0 < ε > i− d is ”good news”–the asset is relatively under

priced. Whereas 0 > ε < (i− d) is ’bad news”–the asset is relatively overpriced.

Price volatility may be generated by HFT gaming the bid-ask spread through order

flow to capitalize on bid-ask bounce, since transaction prices tend to be higher at

the bid and lower at the sell30. In other words, a marketmaker may be subject

to quote stuffing to extract a desired price. If a trader has high latency trading

technology and [s]he is able to predict the direction of prices between bid-ask

spreads, then [s]he can make a miniscule profit on each trade31. Multiplied by
30Aldridge (2011) demonstrated that that is easier said than done.
31See (Campbell et al., 1997, Chapter 3.2) for details on inner workings of market microstructure.
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millions of trades, that number can be significant. Moreover, it is consistent with

price reversal strategies predicated on mean reverting stationary processes η(t)

which may be due to serial correlation induced by bid-ask spread. In fact, (4.4)

answers the question about derivation of the price signal ε posed by Avellaneda

and Lee (2010) relative value pricing equation (3). In order not to overload the

paper we do not address the independently important econometric issues arising

from that specification of futures prices. Cf. MacKinlay and Ramaswamy (1988);

and Stoll and Whaley (1990).

4.2 The impact of stochastic volatility on HFT stock prices

This specification of the model permits extension to representation(s) of stochastic

volatility for the ”X-factor” to mitigate potential simultaneity bias. For exposition,

and analytic tractability we specify a GARCH(1,1) representation for σX .

dσ
2
X(t,ω) = θ(η−σ

2
X(t,ω))dt +ξ σ

2
X(t,ω)dWσX (t,ω) (4.8)
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where θ is the rate of reversion to mean volatility η , ξ is a scale parameter, and

WσX is a background driving Brownian motion. Girsanov change of measure for-

mula, see e.g. (Øksendal, 2003, Thm. II, pg. 164), posits the existence of a Q-

Brownian motion W̃σX (t,ω) and local martingale representation

dσ
2
X(t,ω) = ξ σ

2
X(t,ω)dW̃σX (t,ω) (4.9)

⇒ σ
2
X(t,ω) = exp

(
ξ

∫ t

t0
dW̃σX (u)

)
(4.10)

⇒ σX(t,ω) = exp
(

1
2ξ (W̃σX (u)−W̃σX (t0))

)
(4.11)

Substitution in 3.12 gives us the double exponential representation

S(t,ω) = S(t0)exp
(∫ t

t0
exp(1

2ξ (W̃σX (u,ω)−W̃σX (t0)))βX(u,ω)dB̃X(u,ω)
)

(4.12)

= S(t0)exp(exp(− 1
2 ξW̃σX (t0)))

exp
(∫ t

t0
βX(u,ω)exp(1

2 ξW̃σX (u,ω))dB̃X(u,ω)
) (4.13)

The formula plainly shows that for given stock price exposure, βX , to the ”X-

factor”, if uncertainty in the market is such that volatility is above historic average,

i.e., σ2
X(t,ω) > η because uncertainty about the news W̃σX is relatively high, a

portfolio manager might want to reduce exposure in order to stabilize the price

of S. However, if βX is reduced to the point where it is negative, i.e. there is

short selling, then the price of S will be in an exponentially downward spiral if
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volatility continues to increase. In the face of monotone phase locked strategies

presented in subsection 4.4 this leads to a market crash of the stock price. Thus,

feedback effects between S, the ”X-factor” and exposure control or trade strategy

βX determines the price of S. In this setup, so called market fundamentals do not

determine the price. We present this representation in the following

Lemma 4.1 (Double exponential HFT stock price representation).

When stochastic volatility follows a continuous time GARCH(1,1) process, the

high frequency trading stock price has a double exponential representation given

in 4.13.

�

4.3 Implications for intraday return patterns and volatility

In this subsection we derive the corresponding formula for intraday returns rHFT (t,ω)

for HFT stock price formula. Assuming that σX is stochastic in Proposition 3.3

we have

ln(S(t,ω)) = ln(S(t0))+
∫ t

t0
σX(u,ω)βX(u,ω)dB̃X(u,ω) (4.14)
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Consider the dyadic partition ∏
(n) of [t0, t] such that

t(n)j = t0 + j.2−n(t− t0) (4.15)

d ln(S(t,ω)) =
dS(t,ω)

S(t,ω)
dt =

σX(t,ω)βX(t,ω)dB̃X(t,ω)

S(t0)exp
(∫ t

t0 σX(u,ω)βX(u,ω)dB̃(u,ω)

) (4.16)

The discretized version of that equation, where we write dB̃X(t,ω)
dt ≈ ε̃X(t,ω), sug-

gests that HFT intraday returns is given by

rHFT (t,ω) =

σX(t,ω)βX(t,ω)ε̃X(t,ω)S(t0)
−1

exp
(
−

2n−1

∑
j=0

σX(t
(n)
j ,ω)βX(t

(n)
j ,ω)ε̃X(t

(n)
j ,ω)︸ ︷︷ ︸

past observations

)
(4.17)

Examination of the latter equation shows that it inherits the U-shaped pattern from

2.13 by and through ε̃X(t,ω). This theoretical U-shape result is supported by Ad-

mati and Pfleiderer (1988) in the context of intraday trade volume and optimal

decisions of liquidity traders and informed traders. Moreover, assuming S(t0) = 1,

an admissible decomposition of HFT returns in the context of an ARCH specifi-
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cation is:

rHFT (t,ω) = σHFT (t,ω)ε̃HFT (t,ω), where (4.18)

σHFT (t,ω) = σX(t,ω)exp
(
−

2n−1

∑
j=0

σX(t
(n)
j ,ω)βX(t

(n)
j ,ω)ε̃X(t

(n)
j ,ω)

)
(4.19)

ε̃HFT (t,ω) = βX(t,ω)ε̃X(t,ω) (4.20)

The Sharpe ratio for HFT returns for given risk free rate r f is given by

Sratio(t,ω) =
rHFT (t,ω)− r f

σHFT (t,ω)
(4.21)

=
βX(t,ω)ε̃X(t,ω)

σHFT (t,ω)
−

r f

σHFT (t,ω)
(4.22)

=

(
βX(t,ω)ε̃X(t,ω)− r f

σX(t,ω)

)
exp

(
2n−1

∑
j=0

σX(t
(n)
j ,ω)βX(t

(n)
j ,ω)ε̃X(t

(n)
j ,ω)

)
(4.23)

Examination of 4.19 shows that it admits an asymmetric response to news ε̃X(t
(n)
j ,ω)

about and exposure to the hedge factor X . This is functionally equivalent to Nelson

(1991) EGARCH specification. And it may help explain why Busse (1999) found

weak evidence of volatility timing in daily returns for active portfolio management

in a sample of mutual funds based on his EGARCH specification. Equation 4.20

shows that high frequency traders response ε̃HFT (t,ω) to news ε̃X(t,ω) about the

”X-factor” is controlled by stock price exposure βX(t,ω). Also, for given HFT

volatility, (4.23) shows that Sharpe ratio depends on exposure to hedge factor, and
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ability to interpret ε̃X(t,ω), i.e., predict sgn(ε̃X(t,ω)), since r f is relatively con-

stant over short periods. This is tantamount to predicting the direction of ε̃X(t,ω)

by and through market sentiment, which lends itself to algorithmic trading from

data mining. We summarize this result in the following

Lemma 4.2 (Intraday HFT return behaviour).

The volatility of HFT returns depends on contemporaneous hedge factor volatility

and asymmetrically on historic news about and exposure to hedge factors. Intra-

day HFT returns exhibit EGARCH features, and inherit U-shaped patterns from

price reversal strategies of high frequency traders.

�

Lemma 4.3 (HFT Sharpe ratios).

HFT Sharpe ratio in (4.23) depends on trader ability to forecast the direction of

hedge factor prices with algorithmic trading and data mining.

�

We next extend the analysis to correlation between the background driving pro-

cesses for hedge factor and hedge factor volatility.

Let the X-factor be a forward rate. The stochastic alpha beta rho (SABR)
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model32 for X-dynamics posits:

dX(t,ω) = σX(t,ω)Xβ (t,ω)dBX(t,ω), 0≤ β ≤ 1 (4.24)

dσX(t,ω) = ασX(t,ω)dWσX (t,ω), α ≥ 0 (4.25)

BX(t,ω) = ρWσX (t,ω), |ρ|< 1 (4.26)

where BX and WσX are background driving Brownian motions as indicated. As-

suming without deciding that the SABR model is the correct one to specify the

dynamics of X , the double exponential representation in 4.13 plainly shows that

it includes the background driving Brownian motions in 4.26. In which case we

extend the representation to

S(t,ω) =

= S(t0)exp(exp(− 1
2 ξW̃σX (t0)))

exp
(

ρ

∫ t

t0
βX(u,ω)exp(1

2 ξW̃σX (u,ω))dW̃σX (u,ω)
) (4.27)

That representation plainly shows that now the stock price depends on background

driving dynamics of hedge factor volatility, and its correlation with underlying

hedge factor dynamics. This suggests that for applications the implied volatility

of hedge factor and or some variant of the VIX volatility index should be factored

in HFT stock price formulae. Here again, the nature of the correlation coefficient

ρ , i.e. whether its positive or negative for given exposure βX , determines how the
32See Zhang (2011) for a recent review.
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stock price responds to short selling. We close with the following

Lemma 4.4 (HFT stock price as a function of background driving processes). HFT

stock price dynamics depends on the background driving process for hedge factor

stochastic volatility, and its correlation with the background driving process for

hedge factor dynamics.

Remark 4.1. This lemma implies the existence of a Hidden Markov Model to cap-

ture the latent dynamics in hight frequency trading. In order not to overload the

paper we will not address that issue.

�

4.4 van der Corput’s lemma and phase locked capital gains

Before we examine the impact of phased locked trade strategies on HFT stock

prices, we need the following

Proposition 4.5 (van der Corput’s Lemma). (Stein, 1993, pg. 332)

Suppose φ is real valued and smooth in (a,b), and that |φ (k)(x)| ≥ 1 for all x ∈

(a,b). Then |
∫ b

a exp(iλφ(x))dx| ≤ ckλ
−1

k holds when:

i. k ≥ 2, or

ii. k = 1 and φ ′(x) is monotonic

The bounds ck is independent of φ and λ .

�
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Let

φ
j(t,ω) =

∫ t

t0
β

j
X(u,ω)dB̃X(u) (4.28)

be a local martingale for the j-th high frequency trader. Furthermore, consider the

complex valued stock price function

Ŝ(t,ω) = S(t0)exp
(

iσXφ
j(t)
)

(4.29)

For simplicity, let

S(t0) = 1 (4.30)

Define the oscillatory integrals over some interval t0 < a < t < b for the stochastic

phase function φ j(t,ω)

I j(σX ,ω) =
∫ b

a
S(t,ω)dt =

∫ b

a
exp
(

σXφ
j(t,ω)

)
dt (4.31)

Î j(σX ,ω) =
∫ b

a
Ŝ(t,ω)dt =

∫ b

a
exp
(

iσXφ
j(t,ω)

)
dt (4.32)

Here, I j(σX ,ω) and Î j(σX ,ω) can be interpreted as capital gains over the interval

a < t < b. Consider the differential

φ
j′(t,ω) = β

j
X(t,ω)dB̃X(t) (4.33)
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Let β
j

X(t,ω) be a monotone trade strategy over the trading horizon under con-

sideration. Without loss of generality assume that B̃X is Q-Brownian motion, so

that

|φ j′(t,ω)| ≥ 1⇒ |φ j′(t,ω)|2⇒ β
j2
(t,ω)dt ≥ 1 (4.34)

These are the restrictions that must be imposed on trade strategy for Proposition

4.5 to hold. However, the proposition also suggests that if φ j is real valued and

smooth, i.e. differentiable, and φ j′ is monotonic over the interval (a,b), then the

amplitude of the oscillatory integral has estimate

|Î j(σX ,ω)| ≤ ckσ
−1

k
X (4.35)

From the outset we note that when |φ j′|< 1, the conditions of Proposition 4.5 are

violated so that

Î j(σX ,ω)> ckσ
−1

k
X (4.36)

Furthermore, the conditions above are violated because φ j(t,ω) is a Brownian

functional which oscillates rapidly near 0 so it is not differentiable there33. Specif-

ically, φ j(t,ω) is a function of trade strategy, i.e., exposure to hedge factor, which

fluctuates very rapidly near zero because HFT gets in and out of hedge positions
33The ”0” can be translated to another time t0 say and the rapid oscillation holds by virtue of the strong Markov

property of Brownian motion. See (Karatzas and Shreve, 1991, pg. 86). For empirical evidence see (Kirilenko et al.,
2011, pg. 3) (”We find that on May 6, the 16 trading accounts that we classify as HFTs traded over 1,455,000 contracts,
accounting for almost a third of total trading volume on that day. Yet, net holdings of HFTs fluctuated around zero so
rapidly that they rarely held more than 3,000 contracts long or short on that day”).
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very rapidly. The oscillatory integral Î j(σX ,ω) inherits the rapid fluctuations

which are magnified exponentially. Thus, in a market with a finite number of

traders N, say, we have

N

∑
j=1
|Î j(σX ,ω)| ≥ Nckσ

−1
k

X (4.37)

From 4.31, 2.6 and 4.36 we have

|I j(σX ,ω)| ≥ Î j(σX) (4.38)

⇒
N

∑
j=1
|I j(σX ,ω)| ≥

N

∑
j=1
|Î j(σX)|> Nckσ

−1
k

X (4.39)

⇒ ĪN(σX) =
1
N

N

∑
j=1
|I j(σX ,ω)|> ckσ

−1
k

X (4.40)

Equation 4.31 represents the impact of the j-th trader’s strategy, β
j

X , on capital

gains I j(σX ,ω). However, 4.39 shows that in the best case when volatility grows

no slower than O(N), the cumulative effect of high frequency traders strategies

{β 1
X , . . . ,β

N
X } is unbounded from above. Moreover, 4.40 represents the phased

locked, or average trade strategy effect on capital gains, which is also unbounded

from above. Thus we proved the following

Proposition 4.6 (Phased locked stock price).

Let {β 1
X , . . . ,β

N
X } be the distribution of high frequency traders [monotone] strate-

gies over a given trading horizon in a market with N traders. Let I j(σX ,ω) in 4.31
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be the capital gain impact of the j-th trade strategy induced by the stock price

S(t,ω) = S(t0)exp
(∫ t

t0
σXβ

j
X(u,ω)dB̃X(u,ω)

)
Let

ĪN(σX ,ω) =
1
N

N

∑
j=1
|I j(σX ,ω)|> ckσ

−1
k

X

be the average capital gain induced by phase locked high frequency trading strate-

gies. Then capital gains are bounded from below, but not from above. In which

case, the lower bound constitutes capital gains when the market crashes at ck = 0.

When ck > 0 capital gains are unbounded from above, and determined by high

frequency trading strategies with admissible price bubbles.

�

Remark 4.2. The path characteristics of the Brownian functional φ j(t,ω) are such

that ck = 0 corresponds to very rapid fluctuations, i.e. large jumps, in φ j′(t,ω)

in 4.33 at or near t. In other words, volatility in the stock is extremely high and

there aren’t enough buyers for the phased locked short sales strategies. According

to Kaminska (2011) arbitrageurs, and some high frequency traders withdraw from

the market in the face of this kind of uncertainty. Thus, markets breakdown as

there is a flight to quality and or liquidity in the sense of Akerlof (1970). Some

analysts believe that to be the case in the Flash Crash of May 6, 2010. For ”regu-

lar” φ j′(t,ω), i.e. there is more confidence and markets are bullish, ck > 0 and we

get potential price bubbles from phase locked strategies.
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Remark 4.3. Technically, 4.40 is bounded from above by N(b−a) when φ j(t,ω)=

0. However, this corresponds to βX(t,ω) = 0 and φ j′(t,ω) is undefined at 0, i.e.

jumps in φ j′(t,ω) are infinitely large. In effect, the upper bound is illusionary

because the conditions of Proposition 4.5 are still violated.

4.5 Profitable HFT trade strategies

Let C(σX) be the cost per trade. Assume that the average trader makes M

trades. So that the average profit for the N traders be given by

Π̄N(σX ,ω) = ĪN(σX ,ω)−MC(σX) (4.41)

The average profit per trade is given by

Π̄
M
N (σX) = ĪM

N (σX ,ω)−C(σX), where (4.42)

ĪM
N (σX ,ω) =

ĪN(σX ,ω)

M
(4.43)

This profit is characterized by the behaviour of the phase function φ j(t,ω) in 4.28.

To see that, for given volatility σX , let

sgn(dB̃X(t,ω))> 0 (4.44a)

sgn(dB̃X(t,ω))< 0 (4.44b)

Christensen et al. (2011) report that examination of ultra high frequency data re-

veal that jump variation accounts for about 1% of price movements for ultra high
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frequency trading (UHFT). So that volatility, not price jumps, drives UHFT. In

which case (4.44a) and (4.44b) represent ”bullish” and ”bearish” uncertainty, re-

spectively. In that milieu, the average trade reports a profit when

Π̄
M
N (σX ,ω)> 0⇒ ĪM

N (σX ,ω)> max{ckσ
−1

k
X , C(σX)} (4.45a)

⇒ β
j

X(t,ω)< 0 and sgn(dB̃X(t,ω))< 0, or (4.45b)

β
j

X(t,ω)> 0 and sgn(dB̃X(t,ω))> 0 (4.45c)

Equation 4.37 and (4.32) imply that34 for

∆t = b−a (4.46)

ckσ
−1

k
X ≤ S(t0)∆t (4.47)

Equating the terms in the maximand in (4.45a), and substituting in the equation

above gives us the cost structure

C(σX)

S(t0)
≤ ∆t (4.48)

⇒ σX ≥
( ck

S(t0)∆t

)k
(4.49)

where k is the order of differentiability of the phase function. Since the latency

of high frequency trades is in the order of milliseconds, the time interval ∆t is

quite small. So (4.48) suggests that the cost per trade must be extremely low in

comparison to the price of the stock at the beginning of the trading period. Thus,
34Recall that we set S(t0) = 1. It is being reintroduced here for expository purposes.
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profitable trade strategies include short sell when volatility signals (market sen-

timent) bearish market in (4.45b), buy and hold when volatility signals bullish

market in (4.45c), and trading cost per unit of time and volatility thresholds are as

in (4.48) and (4.49), respectively. As the number of trades increase, i.e. M ↑, the

average profit per trade decreases, i.e. Π̄M
N (σX ,ω) ↓. In practice, given the narrow-

ness of bid ask spreads, and the serial correlation in price changes attributable to

those spreads, a trader need only predict volatility caused by the bid-ask bounce.

Given the dependence of cost and profits on volatility, and narrow spreads, the

trade strategy above is consistent with the observation that high frequency traders

make fractions of a penny on an intra-spread dollar35, but execute such a large

volume of trades that they are able to make a profit36.

Alternatively, the average trade reports a loss when

Π̄
M
N (σX ,ω)< 0⇒ ĪM

N (σX ,ω)<C(σX) (4.50a)

⇒ β
j

X(t,ω)< 0 and sgn(dB̃X(t,ω))> 0, or (4.50b)

β
j

X(t,ω)> 0 and sgn(dB̃X(t,ω))< 0 (4.50c)

So traders incur losses when they misread the market: they short sell when volatil-

ity signals are bullish in (4.50b), or buy and hold when volatility signals are bearish

in (4.50c). The foregoing strategies are summarized in

35(Brogaard, 2010, pg. 2) (”HFTs generate around $2.8 billion in gross annual trading proits and on a per $100
traded earn three-fourths of a penny”).

36(Kirilenko et al., 2011, pg. 3) report that on the day of the Flash Crash, May 6, 2010, HFT traded over 1,455,000
[futures] contracts.
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Proposition 4.7 (Profits of high frequency traders).

Let ĪM
N (σX ,ω) be the average capital gain per trade for M trades, in a market with

N high frequency traders, over a time interval a < t < b, for given hedge factor

volatility σX . Let C(σX) be the unit cost of a trade. Let Π̄M
N (σX ,ω) = ĪM

N (σX ,ω)−

C(σX) be the average profit per trade, and βX(t,ω) be exposure to hedge factor

X. Then Π̄M
N (σX ,ω) ≷ 0 according as volatility signals or market sentiment is

measured by the direction βX(t,ω)sgn(dB̃X(t,ω) ≷ 0 for the strategies in (4.45)

and (4.50); and cost and volatility structure in (4.48) and (4.49).

�

Remark 4.4. This proposition underscores the importance of CBOE VIX signals,

the so called investor fear gauge37 for market sentiment for comparatively low

trade frequency.

4.5.1 A case study of Nanex charts for high frequency trading in natural gas futures on

NYMEX June 8, 2011

This subsection applies our theory to some graphics of high frequency trading in

natural gas index futures on June 8, 2011 according to Hunsader (2011). From the

outset we note that the quantity σ
−1

k
X in (4.36) is a measure of precision about the

hedge factor38. That is, smaller hedge factor volatility implies greater precision,

i.e. more information, and larger amplitude, i.e. σX ↓⇒ Î j(σX ,ω) ↑. The increas-

ing amplitude depicted by the Nanex graphics for the NYMEX Natural Gas index
37Whaley (2000).
38See (DeGroot, 1970, pg. 38) for definition.
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futures (NG), i.e. hedge factor, in Figure 1 and Figure 2 suggest that traders were

using information against market makers, i.e. the adverse selection effect was in

play. The harmonic bid-ask spread proxies for capital gains from trade represented

by Î j(σX ,ω) in (4.36). Figure 3 depicts phase locked short sell price strategies, i.e.

a sell off, and natural gas prices plunge. Market makers subsequently tightened the

spread, and the volume of trade decreased in Figure 4. However, marketmakers

were forced to buy at the high end, and take a loss as depicted in Figure 5. The

text of the annotated graphics for FIGURES 6 to 10, as described by Nanex reads:

The following charts show trade, trade volume, and depth of book prices
and relative sizes for the July 2011 Natural Gas futures trading on NYMEX.
Depth of book data is color coded by color of the rainbow (ROYG-
BIV), with red representing high bid/ask size and violet representing
low bid/ask size. In this way, we can easily see changes in size to the
depth of the trading book for this contract.

Depth of book is 10 levels of bid prices and 10 levels of ask prices.
The bid levels start with the best (highest) bid, and drop in price 10
levels. Ask levels start with the best (lowest) ask, and increase in price
10 levels. The different in price between levels is not always the same.
It depends on traders submitting bids and offers. In other words, depth
of book shows the 10 best bid prices, and 10 best ask prices.

In a normal market, prices move lower when the number of contracts at
the top level bid are executed. The next highest bid level then becomes
the top level, and the 3rd level becomes the second and so forth. A new
level is then added below the previous lowest level. On our our depth
charts display, you would see this behavior as a change in color of the
top level bid from the red end of the spectrum towards the violet end.

On June 8, 2011, starting at 19:39 Eastern Time, trade prices began os-
cillating almost harmonically along with the depth of book. However,
prices rose as bid were executed, and prices declined when offers were
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executed – the exact opposite of a market based on supply and demand.
Notice that when the prices go up, the color on the ask side remains
mostly unchanged, but the color on the bid side goes from red to vi-
olet. When prices go down, the color on the bid side remains mostly
unchanged, but the color on the ask side goes from red to violet. This is
highly unusual.

Upon closer inspection, we find that price oscillates from low to high
when trades are executing against the highest bid price level. After
reaching a peak, prices then move down as trades execute against the
highest ask price level. This is completely opposite of normal market
behavior.

The amplitude (difference between the highest price and lowest price) of
each oscillation slowly increases, until a final violent downward swing
on high volume. There also appears to be 3 groups of these oscilla-
tions or perhaps two intervals separating these oscillations. It’s almost
as if someone is executing a new algorithm that has it’s buying/selling
signals crossed. Most disturbing to us is the high volume violent sell
off that affects not only the natural gas market, but all the other trading
instruments related to it.

5 Conclusion

This paper synthesized the continuous time asset pricing models in Cadogan (2011)

(trade strategy representation theorem), and Jarrow and Protter (2010) (K-factor

model for portfolio alpha), to produce a simple stock price formula that cap-

tures several empirical regularities of stock price dynamics attributable to high

frequency trading–according to emergent literature. The model presented here

does not address fundamental valuation of stock prices. Nor does it explain what

causes a high frequency trader to decide to sell [or buy] in periods of uncertainty.
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However, recent quantum cognition theories show that subjects emit a behavioural

quantum wave in decision making when faced with uncertainty. Thus, further re-

search in that direction may help explain underlying trade cycles. Additionally, the

double exponential representation of HFT stock prices suggests that some kind of

exponential heteroskedasticity correction factor, i.e. EGARCH, should be used for

performance evaluation of active portfolio management. And that HFT profitabil-

ity depends on trader ability to predict market volatility by and through market

sentiment factors like CBOE VIX for low frequency trade, and ability to predict

volatility induced by the bid-ask bounce for ultrahigh frequency trades. The stock

price formula also has independently important econometric implications for cost

of carry models popularized in the futures pricing literature, and suggests future

research in that direction.
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6 Appendix: Nanex graphics for NYMEX natural gas index
futures
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Figure 1: Monotone increasing amplitude of oscillatory integrals for capital gains ÎM
N (σX )
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Figure 2: Comonotone bid-ask spread and trade size
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Figure 3: Price plunge from phase locked short sell strategy
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Figure 4: Marketmaker response to phased lock short sell: Decreased bid-ask spread and trade size
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Figure 5: Adverse selection: Marketmaker buys at the high and takes loss
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Figure 6:
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Figure 7:
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Figure 8:
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50



Figure 10:

51



52



References

Admati, A. and P. Pfleiderer (1988). A Theory of Intraday Patterns: Volume and
Price Variability. Review of Financial Studies 1(1), 3–40.

Akerlof, G. A. (1970, Aug.). The Market for ”Lemons”: Quality Uncertainty and
the Market Mechanism. Quarterly Journal of Economics 84(3), 488–500.

Aldridge, I. (2011, Sept.). How fast Can You Really Trade? Futures Magazine.

Avellaneda, M. and J.-H. Lee (2010). Statistical arbitrage in the US equities Mar-
ket. Quantitative Finance 10(7), 761–782.

Brogaard, J. A. (2010, Nov.). High Frequency Trading and Its Impact
On Market Quality. Working Paper, Kellog School of Management, De-
partment of Finance, Northwestern University. Available at SSRN eLibrary
http://ssrn.com/abstract=1641387.

Busse, J. A. (1999). Volatility Timing in Mutual Funds: Evidence From Daily
Returns. Review of Financial Studies 12(5), 1009–1041.

Cadogan, G. (2011). Alpha Representation For Active Portfolio Management and
High Frequency Trading In Seemingly Efficient Markets. In Proceedings of
Joint Statistical Meeting (JSM), Volume CD-ROM, Alexandria, VA, pp. 673–
687. Business and Economic Statistics Section: American Statistical Associa-
tion.

Campbell, J. Y., A. W. Lo, and A. C. MacKinlay (1997). The Econometrics of
Financial Markets. Princeton, NJ: Princeton University Press.

Christensen, K., R. C. Oomen, and M. Podolskij (2011, May). Fact or
Friction: Jumps at Ultra High Frequency. SSRN eLibrary. Available at
http://ssrn.com/paper=1848774.

Christopherson, J. A., W. A. Ferson, and D. A. Glassman (1998, Spring). Condi-
tional Manager Alphas On Economic Information: Another Look At The Per-
sistence Of Performance. Review of Financial Studies 11(1), 111–142.

de Long, B., A. Shleifer, L. H. Summers, and R. J. Waldman (1990, June). Positive
Feedback Investment Strategies and Destabilizing Rational Speculation. Journal
of Finance 45(2), 379–395.

53

http://ssrn.com/abstract=1641387
http://ssrn.com/paper=1848774


DeGroot, M. (1970). Optimal Statistical Decisions. New York, N.Y.: McGraw-
Hill, Inc.

Doob, J. L. (1949). Heuristic Appproach to The Kolmogorov-Smirnov Theorems.
Ann. Math. Statist. 20(3), 393–403.

Engle, R. (2004, June). Risk and Volatility: Econometric Models and Financial
Practice. American Economic Review 94(3), 405–420.

Engle, R. F. and V. K. Ng (1993, Dec.). Measuring and Testing The Impact of
News on Volatility. Journal of Finance 48(5), 1749–1778.

Fama, E. and K. French (1993). Common Risk Factors in the Return on Bonds
and Stocks. Journal of Financial Economics 33(1), 3–53.

Gordon, M. (1959, May). Dividends, Earnings, and Stock Prices. Review of
Economics and Statistics 41(2), 99–105.

Grinold, R. C. and R. N. Kahn (2000). Active Portfolio Management: A Quanti-
tative Approach for Providing Superior Returns and Controlling Risk (2nd ed.).
New York: McGraw-Hill, Inc.

Hull, J. (2006). Options, Futures, and Other Derivatives (6th ed.). New Jersey:
Prentice-Hall, Inc.

Hunsader, E. S. (2011, August). NANEX Graphics for NYNEX Nat-
ural Gas Index Futures June 8, 2011. Webpage. Available at
http://www.nanex.net/StrangeDays/06082011.html.

Infantino, L. R. and S. Itzhaki (2010, June). Developing High Frequency Equities
Trading Models. Master’s thesis, MIT Sloan, Cambridge, MA. Available at
http://dspace.mit.edu/handle/1721.1/59122.

Jarrow, R. and P. Protter (2010, April). Positive Alphas, Abnormal Performance,
and Illusionary Arbitrage. Johnson School Research Paper #19-2010, Dept. Fi-
nance, Cornell Univ. Available at http://ssrn.com/abstract=1593051. Forthcom-
ing, Mathematical Finance.

Jarrow, R. A. (2010, Summer). Active Portfolio Manageement and Positiive Al-
phas: Fact or fantasy? Journal of Portfolio Management 36(4), 17–22.

54

http://www.nanex.net/StrangeDays/06082011.html
http://dspace.mit.edu/handle/1721.1/59122
http://ssrn.com/abstract=1593051


Jarrow, R. A. and P. Protter (2011). A Dysfunctional Role of High Fre-
quency Trading in Electronic Markets. SSRN eLibrary. Available at
http://ssrn.com/paper=1781124.

Joint Advisory Committee on Emerging Regulatory Issues (2011, Feb.). Recom-
mendations Regarding Regulatory Responses to the Market Events of May 6,
2010: Summary Report of the Joint CFTC-SEC Advisory Committee on Emerg-
ing Regulatory Issues (Feb. 18, 2011). Joint CFTC-SEC Advisory Committee on
Emerging Regulatory Issues. FINRA Conference May 23, 2011. Available at
http://www.sec.gov/spotlight/sec-cftcjointcommittee/021811-report.pdf.

Kaminska, I. (2011, August). ”HFT is killing the emini,” says Nanex. Finan-
cial Times. Available at http://ftalphaville.ft.com/blog/2011/08/08/646276/hft-
is-killing-the-emini-says-nanex/.

Karatzas, I. and S. E. Shreve (1991). Brownian Motion and Stochastic Calculus
(2nd ed.). Graduate Text in Mathematics. New York, N. Y.: Springer-Verlag.

Karlin, S. and H. M. Taylor (1981). A Second Course in Stochastic Processes.
New York, NY: Academic Press, Inc.

Kirilenko, A. A., A. P. S. Kyle, M. Samadi, and T. Tuzun (2011, May). The Flash
Crash: The Impact of High Frequency Trading on an Electronic Market. SSRN
eLibrary. Available at http://ssrn.com/abstract=1686004.

MacKinlay, A. and K. Ramaswamy (1988). Index-futures arbitrage and the be-
havior of stock index futures prices. Review of Financial Studies 1(2), 137–158.

Madhavan, A. (2011). Exchange-Traded Funds, Market Structure and the Flash
Crash. SSRN eLibrary. Available at http://ssrn.com/paper=1932925.

McTague, J. (2010, Aug.). Was The Flash Crash Rigged? Barron’s. Available at
http://online.barrons.com/article/SB50001424052970204304404575449930920336058.html.

Nelson, D. (1991, March). Conditional Heteroskedasticity in Asset Pricing: A
New Approach. Econommetrica 59(2), 347–370.

Noehel, T., Z. J. Wang, and J. Zheng (2010). Side-by-Side Management of Hedge
Funds and Mutual Funds. Review of Financial Studies 23(6), 2342–2373.

Øksendal, B. (2003). Stochastic Differential Equations: An IntroductionWith Ap-
plications (6th ed.). Universitext. New York: Springer-Verlag.

55

http://ssrn.com/paper=1781124
http://www.sec.gov/spotlight/sec-cftcjointcommittee/021811-report.pdf
http://ftalphaville.ft.com/blog/2011/08/08/646276/hft-is-killing-the-emini-says-nanex/
http://ftalphaville.ft.com/blog/2011/08/08/646276/hft-is-killing-the-emini-says-nanex/
http://ssrn.com/abstract=1686004
http://online.barrons.com/article/SB50001424052970204304404575449930920336058.html


Shephard, N. (1996). Time Series Models in Econometrics, Finance and Other
Fields, Chapter Statistical Aspects of ARCH and Stochastic Volatility, pp. 1–
67. London: Chapman & Hall.

Shiller, R. (1989). Comovement in Stock Prices and Comovement in Dividends.
Journal of Finance 44(2), 719–729.

Shiller, R. J. and A. E. Beltratti (1992). Stock prices and bond yields: Can their co-
movements be explained in terms of present value models? Journal of Monetary
Economics 30(1), 25 – 46.

Sornette, D. and S. Von der Becke (2011). Crashes and High Frequency Trading.
SSRN eLibrary. Available at http://ssrn.com/paper=1976249.

Stein, E. M. (1993). Harmonic Analysis: Real Variable Methods, Orthogonality,
and Oscillatory Integrals. Princeton, NJ: Princeton Univ. Press.

Stoll, H. R. and R. E. Whaley (1990). The dynamics of stock index and stock
index futures returns. Journal of Financial and Quantitative Analysis 25(04),
441–468.

Tobin, J. (1984, Fall). A mean variaance approach to fundamental valuation. Jour-
nal of Portfolio Management, 26–32.

Whaley, R. E. (2000). The Investor Fear Gauge: Explication of the CBOE VIX.
Journal of Portfolio Management 26(3), 12–17.

Whitten, D. (2011, August 17). Has High Frequency Trading,
Futures, Derivatives, etc., Rigged The Game Against Individ-
ual Investors? Not Really. iStockAnalyst.com. Available at
http://www.istockanalyst.com/finance/story/5364511/has-high-frequency-
trading-futures-derivatives-etc-rigged-the-game-against-individual-investors-
not-really.

Zhang, F. (2010). High-Frequency Trading, Stock Volatility, and Price Discovery.
SSRN eLibrary. Available at http://ssrn.com/paper=1691679.

Zhang, N. (2011, June). Properties of the SABR Model. Working Pa-
per, Dep’t of Mathematics, Uppasala Uviv. Available at http:// uu.diva-
portal.org/smash/get/diva2:430537/FULLTEXT01.

56

http://www.istockanalyst.com/finance/story/5364511/has-high-frequency-trading-futures-derivatives-etc-rigged-the-game-against-individual-investors-not-really
http://www.istockanalyst.com/finance/story/5364511/has-high-frequency-trading-futures-derivatives-etc-rigged-the-game-against-individual-investors-not-really
http://www.istockanalyst.com/finance/story/5364511/has-high-frequency-trading-futures-derivatives-etc-rigged-the-game-against-individual-investors-not-really
http://ssrn.com/paper=1691679
http:// uu.diva-portal.org/smash/get/diva2:430537/FULLTEXT01
http:// uu.diva-portal.org/smash/get/diva2:430537/FULLTEXT01

	Introduction
	The Model
	Trade strategy representation of alpha in single factor CAPM

	High Frequency Trading Stock Price Formula
	Applications
	Implications for cost of carry models and optimal hedge ratio
	The impact of stochastic volatility on HFT stock prices
	Implications for intraday return patterns and volatility
	van der Corput's lemma and phase locked capital gains
	Profitable HFT trade strategies
	A case study of Nanex charts for high frequency trading in natural gas futures on NYMEX June 8, 2011


	Conclusion
	Appendix: Nanex graphics for NYMEX natural gas index futures
	References

